Binary Star Zip

Binary star photos

A binary star is a star system consisting of two stars orbiting around their common barycenter.Systems of two or more stars are called multiple star systems.These systems, especially when more distant, often appear to the unaided eye as a single point of light, and are then revealed as multiple by other means. Here you can download masters of the universe binary star shared files: Binary Star Masters Of The Universe 1998 v0.rar from mediafire.com 154.74 MB, Binary star - masters of the universe.zip from mega.co.nz 76.71 MB, Binary Star-Masters Of The Universe.zip from mediafire.com 68.39 MB, Binary Star- Masters of the Universe (2000) (2004).zip.

Binary Star Hip Hop Group

Binary Star

Binary Star Light Years Apart

from __future__ import division
from visual import *
from visual.graph import *
#Andre Londono
#UC Berkeley
#Binary star system for Physics 77
scene = display(width = 800, height = 800)
scene.autoscale =0
scene.range=7e11
#Create objects to be modeled/ define geometric attributes
star1 = sphere(radius = 7e9,color = color.white, pos=vector(1.5e11,0,0) )
star2 = sphere(radius = 7e10, color = color.blue,pos=vector(-1.5e11,0,0))
#mywindow1 = gdisplay(xtitle = 'time(s)',ytitle = 'Energy (J)', title = 'Total energy of star 1')
#f1 = gcurve(gdisplay = mywindow1, color = color.cyan)
#f2 = gcurve(gdisplay = mywindow1, color = color.red)
#Define physical attributes of objects
G = 6.7e-11
star1.m = 2.0e30
star2.m = 10.0e30
#star2.m = 2.0e30
#Specify initial conditions
star1.p = star1.m*vector(0, 5e4,0)
#star1.p = star1.m*vector(0, 5e3, 0)
star2.p= -star1.p
planet1 = sphere(pos = (-300, 10, 0), radius = 30, color = color.red, make_trail=true)
star2.Fnet = vector(0,0,0)
star1.Fnet = vector(0,0,0)
#Visualize momentum/force vectors with arrows
#Determine scale through approximation of magnitude of vector to scale arrow into scene
scale = 2e10/1e27
star1.FnetVector= arrow(pos = star1.pos, axis = star1.Fnet*scale, color = color.white)
star2.FnetVector = arrow(pos = star2.pos, axis = star2.Fnet*scale, color = color.blue)
momentumScale = 2e11/star1.p.mag
star1.momentumVector = arrow(pos = star1.pos, axis = star1.p*momentumScale, color = color.white)
star2.momentumVector = arrow(pos = star2.pos, axis = star2.p*momentumScale, color = color.blue)
trail1 = curve(color = star1.color)
trail2 = curve(color = star2.color)
t = 0
dt = 1.0e5
while true:
rate(100)
dvector = star1.pos-star2.pos
dmagnitude = mag(dvector)
dDir = dvector/dmagnitude
#calculate gravitational force between stars
Fgrav1 = G*star1.m*star2.m / dmagnitude**2.0
star2.Fnet = Fgrav1*dDir
star1.Fnet = -star2.Fnet
#update momentum/position
star2.p = star2.p + star2.Fnet*dt
star2.pos = star2.pos+star2.p/star2.m*dt
star1.p = star1.p + star1.Fnet*dt
star1.pos = star1.pos+star1.p/star1.m*dt
#append positions to curve object
trail1.append(pos = star1.pos)
trail2.append(pos = star2.pos)
star1.momentumVector.pos=star1.pos
star1.momentumVector.axis=star1.p*momentumScale
star2.momentumVector.pos=star2.pos
star2.momentumVector.axis=star2.p*momentumScale
star1.FnetVector.pos=star1.pos
star1.FnetVector.axis=star1.Fnet*scale
star2.FnetVector.pos=star2.pos
star2.FnetVector.axis=star2.Fnet*scale
t = t+dt
#graphs
# star1KE = .5*star1.m*mag(star1.p)**2
# star1GPE = G*(star2.m*star1.m)/(mag(star2.pos-earth.pos)
#t = t + dt
# f1.plot(pos = (t, star1KE))
# f2.plot(pos = (t, star1GPE))

Binary Star Zip Download

Sign up for freeto join this conversation on GitHub. Already have an account? Sign in to comment