A binary star is a star system consisting of two stars orbiting around their common barycenter.Systems of two or more stars are called multiple star systems.These systems, especially when more distant, often appear to the unaided eye as a single point of light, and are then revealed as multiple by other means. Here you can download masters of the universe binary star shared files: Binary Star Masters Of The Universe 1998 v0.rar from mediafire.com 154.74 MB, Binary star - masters of the universe.zip from mega.co.nz 76.71 MB, Binary Star-Masters Of The Universe.zip from mediafire.com 68.39 MB, Binary Star- Masters of the Universe (2000) (2004).zip.
Binary Star Hip Hop Group
Binary Star
Binary Star Light Years Apart
from __future__ import division |
from visual import * |
from visual.graph import * |
#Andre Londono |
#UC Berkeley |
#Binary star system for Physics 77 |
scene = display(width = 800, height = 800) |
scene.autoscale =0 |
scene.range=7e11 |
#Create objects to be modeled/ define geometric attributes |
star1 = sphere(radius = 7e9,color = color.white, pos=vector(1.5e11,0,0) ) |
star2 = sphere(radius = 7e10, color = color.blue,pos=vector(-1.5e11,0,0)) |
#mywindow1 = gdisplay(xtitle = 'time(s)',ytitle = 'Energy (J)', title = 'Total energy of star 1') |
#f1 = gcurve(gdisplay = mywindow1, color = color.cyan) |
#f2 = gcurve(gdisplay = mywindow1, color = color.red) |
#Define physical attributes of objects |
G = 6.7e-11 |
star1.m = 2.0e30 |
star2.m = 10.0e30 |
#star2.m = 2.0e30 |
#Specify initial conditions |
star1.p = star1.m*vector(0, 5e4,0) |
#star1.p = star1.m*vector(0, 5e3, 0) |
star2.p= -star1.p |
planet1 = sphere(pos = (-300, 10, 0), radius = 30, color = color.red, make_trail=true) |
star2.Fnet = vector(0,0,0) |
star1.Fnet = vector(0,0,0) |
#Visualize momentum/force vectors with arrows |
#Determine scale through approximation of magnitude of vector to scale arrow into scene |
scale = 2e10/1e27 |
star1.FnetVector= arrow(pos = star1.pos, axis = star1.Fnet*scale, color = color.white) |
star2.FnetVector = arrow(pos = star2.pos, axis = star2.Fnet*scale, color = color.blue) |
momentumScale = 2e11/star1.p.mag |
star1.momentumVector = arrow(pos = star1.pos, axis = star1.p*momentumScale, color = color.white) |
star2.momentumVector = arrow(pos = star2.pos, axis = star2.p*momentumScale, color = color.blue) |
trail1 = curve(color = star1.color) |
trail2 = curve(color = star2.color) |
t = 0 |
dt = 1.0e5 |
while true: |
rate(100) |
dvector = star1.pos-star2.pos |
dmagnitude = mag(dvector) |
dDir = dvector/dmagnitude |
#calculate gravitational force between stars |
Fgrav1 = G*star1.m*star2.m / dmagnitude**2.0 |
star2.Fnet = Fgrav1*dDir |
star1.Fnet = -star2.Fnet |
#update momentum/position |
star2.p = star2.p + star2.Fnet*dt |
star2.pos = star2.pos+star2.p/star2.m*dt |
star1.p = star1.p + star1.Fnet*dt |
star1.pos = star1.pos+star1.p/star1.m*dt |
#append positions to curve object |
trail1.append(pos = star1.pos) |
trail2.append(pos = star2.pos) |
star1.momentumVector.pos=star1.pos |
star1.momentumVector.axis=star1.p*momentumScale |
star2.momentumVector.pos=star2.pos |
star2.momentumVector.axis=star2.p*momentumScale |
star1.FnetVector.pos=star1.pos |
star1.FnetVector.axis=star1.Fnet*scale |
star2.FnetVector.pos=star2.pos |
star2.FnetVector.axis=star2.Fnet*scale |
t = t+dt |
#graphs |
# star1KE = .5*star1.m*mag(star1.p)**2 |
# star1GPE = G*(star2.m*star1.m)/(mag(star2.pos-earth.pos) |
#t = t + dt |
# f1.plot(pos = (t, star1KE)) |
# f2.plot(pos = (t, star1GPE)) |
Binary Star Zip Download
Sign up for freeto join this conversation on GitHub. Already have an account? Sign in to comment